Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 30(8): 893-905.e7, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37463583

RESUMEN

Protein glycosylation influences cellular recognition and regulates protein interactions, but how glycosylation functions alongside other common posttranslational modifications (PTMs), like tyrosine sulfation (sTyr), is unclear. We produced a library of 53 chemoenzymatically synthesized glycosulfopeptides representing N-terminal domains of human and murine P-selectin glycoprotein ligand-1 (PSGL-1), varying in sTyr and O-glycosylation (structure and site). Using these, we identified key roles of PSGL-1 O-glycosylation and sTyr in controlling interactions with specific chemokines. Results demonstrate that sTyr positively affects CCL19 and CCL21 binding to PSGL-1 N terminus, whereas O-glycan branching and sialylation reduced binding. For murine PSGL-1, interference between PTMs is greater, attributed to proximity between the two PTMs. Using fluorescence polarization, we found sTyr is a positive determinant for some chemokines. We showed that synthetic sulfopeptides are potent in decreasing chemotaxis of human dendritic cells toward CCL19 and CCL21. Our results provide new research avenues into the interplay of PTMs regulating leukocyte/chemokine interactions.


Asunto(s)
Glicoproteínas de Membrana , Tirosina , Ratones , Animales , Humanos , Glicosilación , Tirosina/química , Glicoproteínas de Membrana/metabolismo , Unión Proteica
2.
Commun Biol ; 4(1): 674, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083726

RESUMEN

The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.


Asunto(s)
Epítopos/metabolismo , Galactosa/análogos & derivados , Glicoproteínas/metabolismo , Lampreas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Fucosa/metabolismo , Galactosa/metabolismo , Glicoproteínas/química , Glicosilación , Células HEK293 , Humanos , Lampreas/inmunología , Ligandos , Espectrometría de Masas/métodos , Ácido N-Acetilneuramínico/metabolismo , Sulfatos/metabolismo , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
3.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108208

RESUMEN

The recognition of oligomannose-type glycans in innate and adaptive immunity is elusive due to multiple closely related isomeric glycan structures. To explore the functions of oligomannoses, we developed a multifaceted approach combining mass spectrometry assignments of oligomannose substructures and the development of a comprehensive oligomannose microarray. This defined microarray encompasses both linear and branched glycans, varying in linkages, branching patterns, and phosphorylation status. With this resource, we identified unique recognition of oligomannose motifs by innate immune receptors, including DC-SIGN, L-SIGN, Dectin-2, and Langerin, broadly neutralizing antibodies against HIV gp120, N-acetylglucosamine-1-phosphotransferase, and the bacterial adhesin FimH. The results demonstrate that each protein exhibits a unique specificity to oligomannose motifs and suggest the potential to rationally design inhibitors to selectively block these protein-glycan interactions.

4.
Sci Rep ; 10(1): 15436, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963315

RESUMEN

Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20-60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease.


Asunto(s)
Anticuerpos/sangre , Antígenos/inmunología , Carbohidratos/inmunología , Suero/inmunología , Sistema del Grupo Sanguíneo ABO/inmunología , Adulto , Animales , Femenino , Humanos , Inmunidad Humoral/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Polisacáridos/inmunología , Adulto Joven
5.
Commun Biol ; 3(1): 91, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111965

RESUMEN

Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications.


Asunto(s)
Formación de Anticuerpos , Lampreas , Polisacáridos/inmunología , Animales , Animales de Laboratorio , Células CHO , Células Cultivadas , Cricetulus , Glicoconjugados/análisis , Glicoconjugados/inmunología , Glicoconjugados/metabolismo , Células HEK293 , Humanos , Inmunización/métodos , Inmunización/veterinaria , Inmunohistoquímica/métodos , Indicadores y Reactivos , Lampreas/inmunología , Ratones , Ratones Endogámicos BALB C , Polisacáridos/antagonistas & inhibidores
6.
Front Mol Biosci ; 6: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572731

RESUMEN

This focused chapter serves as a short survey of glycan microarrays that are available with sialylated glycans, including both defined and shotgun arrays, their generation, and their utility in studying differential binding interactions to sialylated compounds, highlighting N-glycolyl (Gc) modified sialylated compounds. A brief discussion of binding interactions by lectins, antibodies, and viruses, and their relevance that have been observed with sialylated glycan microarrays is presented, as well as a discussion of cross-comparisons of array platforms and efforts to centralize and standardize the glycan microarray data.

7.
Bioconjug Chem ; 30(11): 2897-2908, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31600064

RESUMEN

To aid in generating complex and diverse natural glycan libraries for functional glycomics, more efficient and reliable methods are needed to derivatize glycans. Here we present our development of a reversible, cleavable bifunctional linker 3-(methoxyamino)propylamine (MAPA). As the fluorenylmethyloxycarbonate (Fmoc) version (F-MAPA), it is highly fluorescent and efficiently derivatizes free reducing glycans to generate closed-ring derivatives that preserve the structural integrity of glycans. A library of glycans were derivatized and used to generate a covalent glycan microarray using N-hydroxysuccinimide derivatization. The array was successfully interrogated by a variety of lectins and antibodies, demonstrating the importance of closed-ring chemistry. The glycan derivatization was also performed at large scale using milligram quantities of glycans and excess F-MAPA, and the reaction system was successfully recycled up to five times, without an apparent decrease in conjugation efficiency. The MAPA-glycan is also easy to link to protein to generate neoglycoproteins with equivalent glycan densities. Importantly, the MAPA linker can be reversibly cleaved to regenerate free reducing glycans for detailed structural analysis (catch-and-release), often critical for functional studies of undefined glycans from natural sources. The high conjugation efficiency, bright fluorescence, and reversible cleavage of the linker enable access to natural glycans for functional glycomics.


Asunto(s)
Fluorescencia , Glicómica/métodos , Glicoproteínas/química , Polisacáridos/química , Propilaminas/química , Conformación de Carbohidratos , Humanos , Análisis por Micromatrices
8.
Front Chem ; 7: 833, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921763

RESUMEN

Glycans and glycan binding proteins (GBPs or lectins) are essential components in almost every aspect of immunology. Investigations of the interactions between glycans and GBPs have greatly advanced our understanding of the molecular basis of these fundamental immunological processes. In order to better study the glycan-GBP interactions, microscope glass slide-based glycan microarrays were conceived and proved to be an incredibly useful and successful tool. A variety of methods have been developed to better present the glycans so that they mimic natural presentations. Breakthroughs in chemical biology approaches have also made available glycans with sophisticated structures that were considered practically impossible just a few decade ago. Glycan microarrays provide a wealth of valuable information in immunological studies. They allow for discovery of detailed glycan binding preferences or novel binding epitopes of known endogenous immune receptors, which can potentially lead to the discovery of natural ligands that carry the glycans. Glycan microarrays also serve as a platform to discover new GBPs that are vital to the process of infection and invasion by microorganisms. This review summarizes the construction strategies and the immunological applications of glycan microarrays, particularly focused on those with the most comprehensive sets of glycan structures. We also review new methods and technologies that have evolved. We believe that glycan microarrays will continue to benefit the growing research community with various interests in the field of immunology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...